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Hill & Foda (1998) and Jamali (1998) have presented theoretical and experimental
studies of the resonant interaction between a surface wave and two oblique interfacial
waves. Despite many similarities between the findings there is one seemingly major
difference. Hill & Foda’s (1998) analysis indicated that there are only narrow bands
of frequency, density ratio and direction angle within which growth is possible. On the
other hand, Jamali (1998) predicted and observed wave growth over wide ranges of
frequency and direction angle, and for all the density ratios that he investigated. We
show that Hill & Foda’s (1998) second-order representation of the dynamic interfacial
boundary condition is missing a term proportional to the time derivative of the square
of the velocity shear across the interface. When this missing term is included in the
analysis, the resulting predictions are consistent with the laboratory experiments.

1. Introduction
Resuspension of material from the layers of fluid mud at the bottom of many lakes,

estuaries and coastal waters, and from the unconsolidated sludge at the bottom of
mine tailings ponds can be of significant practical importance (US Army Coastal
Engineering Research Center 1984; Lawrence, Ward & MacKinnon 1991). One
mechanism for resuspension is the generation of waves at the interface between
the fluid mud (or mine tailings) and the overlying water due to surface wave motion.
Hill (1997) and Jamali (1998) have studied this problem independently. An account
of the work of Hill (1997) is given in Hill & Foda (1998). The present paper provides
an overview of part of Jamali’s (1998) work. Both studies adopted essentially the
same approach to analyse the interaction between a surface wave and two oblique
interfacial waves. They found that the interfacial waves are short, have a frequency
of nearly half that of the surface wave, and propagate in nearly opposite directions.
In laboratory tanks, these interfacial waves reflect from the sidewalls to form a three-
dimensional standing wave pattern. Hill & Foda (1998) excited the lowest mode in
the cross-tank direction, whereas Jamali (1998) excited higher modes.

Despite many similarities between the findings of Hill & Foda (1998) and Jamali
(1998) there is one seemingly major difference. Hill & Foda’s (1998) analysis predicts
only narrow bands of frequency, density ratio and direction angle within which
growth is possible, leading them to state: ‘The net effect of these various bounds
is that instability of the internal waves, i.e. internal wave growth, is found to be a
very selective process, occurring under very specific conditions.’ On the other hand,
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Figure 1. Definition diagram for the interaction of a surface wave with two interfacial waves.

Jamali (1998) predicted and observed wave growth over wide ranges of frequency
and direction angle, and for all the density ratios he investigated. The purpose of the
present study is to investigate these contradictory results.

2. Theoretical background
We now present the basic theoretical development common to both Hill & Foda

(1998) and Jamali (1998). Consider the inviscid, two-layer fluid system shown in
figure 1. The system is assumed to be three-dimensional and horizontally infinite. The
coordinate system xyz is located on the interface. The depth of the upper layer is h,
the lower layer d and the total depth H . The densities of the upper and lower layers
are ρ+ and ρ−, respectively. Although viscosity is important in damping the waves, it
is not central to our primary objective of comparing the results of the inviscid studies
of Jamali (1998) and Hill & Foda (1998). Therefore, viscosity will not be treated in
the present analysis. The resonant triad consists of a surface wave and two interfacial
waves. Without loss of generality, the surface wave is assumed to travel in the positive
x-direction and the two interfacial waves in the (x, y)-plane. The interfacial waves 1
and 2 have directional angles θ1 and θ2 with respect to the surface wave. The three
waves satisfy the resonance conditions:

k0 = k1 + k2, ω0 = ω1 + ω2, (1)

where the wave frequencies ωi have real positive values and the wavenumber vectors
ki = (kix, kiy). The subscript 0 denotes the surface wave and the subscripts 1 and 2 the
two interfacial waves. The dispersion relationship for this system is well known (see
Lamb 1932, art. 231). In many circumstances δ =1 − r � 1, where r = ρ+/ρ−. From
the simultaneous solution of (1) and the dispersion relations, ki = |ki |, ω1, ω2 and θ2

are approximated by:

k1 ∼ k2 =
k0 tanh(k0H )

2δ
+ O(1), ω1 ∼ ω2 = 1

2
ω0 +O(δ), and θ2 = θ1 + π +O(δ). (2)

These results are consistent with the observations of both Hill & Foda (1998) and
Jamali (1998).
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With the assumptions of incompressibility and irrotational flow in each of the
layers, the fluid motion can be described by velocity potentials φ±(x, y, z, t) in the
upper and the lower layers, respectively. These potentials satisfy Laplace’s equation,
and are subject to boundary conditions on the free surface, the interface between
the layers, and the solid bed. Of particular relevance to the present study are the
boundary conditions on the interface z = η(x, y, t):

ηt + φ±
x ηx + φ±

y ηy = φ±
z , (3a)

ρ+[φ+
t + ((φ+

x )2 + (φ+
y )2 + (φ+

z )2)/2 + gz] = ρ−[φ−
t + ((φ−

x )2 + (φ−
y )2 + (φ−

z )2)/2 + gz],

(3b)

where η(x, y, t) is the displacement of the interface.
The standard procedure for a weakly nonlinear interaction analysis (Craik 1985)

yields:

da1

dt
= iα1a

∗
2A,

da2

dt
= iα2a

∗
1A, (4)

where a1(t) and a2(t) are the complex amplitudes of the interfacial waves, A is the
complex amplitude of the surface wave, and the interaction coefficients α1 and α2 are
real, but complicated functions of the characteristic parameters of the problem. In
both Hill & Foda (1998) and Jamali (1998), the surface wave has much more energy
than the interfacial waves and A is assumed constant. The interfacial wave amplitudes
are then given by a1, a2 ∝ exp(±α|A|t), where α =

√
α1α2. For the case where δ � 1,

then Jamali, Seymour & Lawrence (2003) have shown that:

α =
ω3

0

4g sinh2(k0H )
[cosh(k0H ) cosh(k0d) sin2 θ1 + cosh(k0h)] + O(δ), (5)

which is positive for all values of ω0 and θ1, in contrast to the predictions of Hill &
Foda (1998). Jamali (1998) gives general expressions for the interaction coefficients
when the relative density difference is not restricted to be small; Hill & Foda (1998)
do not, but even if they had, the expressions are so long that it would be extremely
difficult to make a direct comparison. Fortunately, a direct comparison of interaction
coefficients may not be necessary to resolve the difference between the two studies.

3. Theoretical comparison
A potential source of discrepancy between the two studies is in the treatment of the

interfacial boundary conditions. After applying Taylor series expansions about z = 0,
(3) become:

φ+
z − ηt = −φ+

zzη + φ+
x ηx + φ+

y ηy + O(ε3), (6)

φ−
z − ηt = −φ−

zzη + φ−
x ηx + φ−

y ηy + O(ε3), (7)

Φt + g′η = Λ − ηΦtz + O(ε3), (8)

where Φ = φ− − rφ+, g′ = δg, Λ= (r |∇φ+|2 − |∇φ−|2)/2, and ε is the wave steepness.
Multiplying (7) by g, and subtracting (6) multiplied by rg yields:

gΦz − g′ηt = −gηΦzz + gηxΦx + gηyΦy + O(ε3). (9)



4 M. Jamali, G. A. Lawrence and B. Seymour

Adding the time derivative of (8) to (9), the dynamic interfacial boundary condition
becomes:

Φtt + gΦz = Λt − ηtΦtz +
Φt

g′ {Φttz + gΦzz} + gηxΦx + gηyΦy + O(ε3), (10)

knowing that from (8) η = −Φt/g
′ + O(ε2). The corresponding result given by Hill

(1997, equation 3.11) is:

Φtt + gΦz = 2Λt +
Φt

g′ {Φttz + gΦzz} + O(ε3). (11)

To determine whether or not (10) and (11) are equivalent, we define S to be equal to
the right-hand side of (10) minus the right-hand side of (11), to obtain:

S = −Λt−ηtΦtz+gηxΦx+gηyΦy+O(ε3) =
−r

2(1 − r)

{
(φ+

x − φ−
x )2 + (φ+

y − φ−
y )2t

}
+O(ε3).

(12)

Thus, Hill’s (1997) expression for the dynamic interfacial boundary condition is
missing the non-zero term S, which is proportional to the time derivative of the
square of the velocity shear across the interface. Given that a correct representation
of the interfacial boundary condition is crucial to an accurate determination of growth
rates, it is important that we examine the consequences of the above result.

We have compared growth rate predictions of Hill & Foda (1998, figure 7b) with
those computed using the solution of Jamali (1998), first with (10) and then with (11)
as the interfacial boundary condition. The results of the three analyses are plotted
in figure 2(a). These are for the experimental parameters h = 12.5 cm, d = 7.9 cm,
r = 0.85, k1y = k2y = 20.6 m−1, and ω0 = 8.7 s−1 (corresponding to the second set of ex-
periments of Hill & Foda 1998), which yield k0 = 8.3 m−1, k1 = 26.6 m−1, k2 = 22.3 m−1,
θ1 = 50.7◦, and θ2 = 247◦. All three analyses correctly predict the lower bound on the
surface wave frequency, which is a purely kinematic constraint. The calculations based
on the interfacial boundary condition (11), i.e. without the term S, provide a close
match to those of Hill & Foda (1998). However, when S is included, the predicted
growth rates are generally higher, and there is no upper bound on surface wave
frequency. Thus, it seems that an important difference between the two studies is
that Hill & Foda (1998) use a dynamic interfacial boundary condition that omits the
velocity shear at the interface.

As a consequence of using an incorrect boundary condition, Hill & Foda (1998)
predict an upper bound on the surface wave frequency, corresponding to a threshold
where the interaction coefficients change from having the same sign to having different
signs, resulting in an imaginary α. However, when S is included, there is no such
threshold on ω0. In fact, for interaction coefficients in a three-wave interaction
α1/ω1 = α2/ω2, see Simmons (1969) and Phillips (1977). Since ω1 and ω2 are positive,
the interaction coefficients must always be of the same sign. Furthermore, Hill
& Foda’s (1998) result that the interaction coefficients may have different signs
contradicts the analysis of Hasselmann (1967) who states: ‘The non-linear coupling
between two infinitesimal components 1 and 2 and a finite component 0 whose wave-
numbers and frequencies satisfy the resonant conditions k0 = k1 ± k2, ω0 =ω1 ± ω2, is
unstable for the sum interaction and neutrally stable for the difference interaction.’
Hasselmann showed that these results apply for all conservative coupled-mode systems
independent of the details of the coupling.
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Figure 2. Predictions of the variation of growth rate with (a) surface wave frequency, and
(b) direction angle of the interfacial wave 1; h = 12.5 cm, d = 7.9 cm, r = 0.85, k1y = k2y =

20.6 m−1, ω0 = 8.7 s−1 (corresponding to the second set of experiments of Hill & Foda 1998).
, predictions obtained using the solution of Jamali (1998) with boundary condition (10)

and - - -, with boundary condition (11). —, predictions presented by Hill & Foda (1998,
figure 7b). The predicted growth rates are scaled by αmax, the maximum value predicted by
each of the analyses, because Hill & Foda’s graph (1998, figure 7b) is subject to a scaling error
(Hill personal communication).

Hill & Foda (1998) also examined the effect of interfacial wave direction on α.
Their results are plotted in figure 2(b) with those obtained using Jamali’s (1998)
equations, first with (10), and then with (11) as the interfacial boundary condition.
The predictions of Hill & Foda (1998), and the predictions obtained using (11), show
only a narrow band at θ1 ≈ ± π/2 within which growth is possible. The width of this
narrow band is not the same in each case, for reasons that we are not aware of.
However, when Jamali’s (1998) complete equations are used, α is always positive with
a maximum at θ1 ≈ ± π/2, so the response does not appear to be narrow banded.
Also, the experimental data presented in Hill & Foda (1998) indicate direction angles
substantially different from ± π/2. To further test the above results, we will examine
some of the experimental observations of Jamali (1998).
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Exp. H (cm) d (cm) d/H T0 (s) ω0 (s−1) l̄x (cm) k̄ (m−1) m θ̄ (deg)

1 15.8 3.8 0.24 1.30 4.8 20 0.43 2 43
2 16.5 3.8 0.23 1.19 5.3 67 0.46 3 78
3 16.3 3.8 0.23 1.11 5.7 27 0.50 3 62
4 16.4 3.9 0.24 0.96 6.5 17 0.70 4 58
5 16.0 3.9 0.24 0.90 7.0 21 0.80 5 68
6 16.5 3.9 0.24 0.84 7.5 40 0.91 6 80
7 16.5 3.9 0.24 0.80 7.9 16 0.98 6 66

Table 1. Summary of the experimental parameters. Measured values are given in italics. The
density relative difference δ = 0.04 in each experiment.

4. Experimental investigation
The experiments of Jamali (1998) were performed in a wave tank 4 m long, 21 cm

wide and 35 cm deep. A video camera was used to record the experiments and to
obtain the measurements of heights, frequencies and wavelengths of the surface and
the interfacial waves. A series of seven experiments was performed, see table 1. The
experimental strategy was to vary the surface wave period, T0, while holding the other
controllable parameters approximately constant; i.e. δ = 0.04 and d/H =0.24. In each
experiment, the along channel wavelength l̄x was measured. The measurements were
made with an experimental error of ±1 mm in H and d , ±0.02 s in T0, ±0.002 in δ, and
±1 cm in l̄x .

A brief discussion of the experimental results will be presented here with the
objective of providing enough information to make comparisons with the work of
Hill & Foda (1998). For a more detailed account see Jamali (1998). In each of the
experiments, a three-dimensional standing wave pattern was observed at the interface.
By recognizing that the standing wave pattern is generated by the superposition of
the pair of the interfacial waves with their reflections from the sidewalls, Jamali (1998)
has shown that the interfacial displacement:

ηint(x, y, t) = b(x, t) cos(k̄xx) cos(k̄yy) sin
(

1
2
ωot

)
, (13)

where the standing wave amplitude b(x, t) is a slowly varying function of x and t .
The standing wave pattern is characterized by the wavenumber vector k̄ = (k̄x, k̄y),
where

k̄x = (k1x − k2x)/2, k̄y = mπ/B. (14)

B is the width of the channel, and the mode number m is the number of half
wavelengths in the cross-tank direction. In a tank, k̄y = k1y = k2y . Flow with m = 4
(exp. 4) is shown in figure 3. The interfacial waves are short compared to the surface
wave in accordance with (2) and (14).

The direction of the waves in the standing interfacial pattern can be defined by angle
θ̄ = arcsin(k̄y/k̄). Given that δ � 1 in the experiments, then from (2) k1x = −k2x + O(1)
and k̄ = k̄1 +O(1), which gives θ̄ = θ1 +O(δ). The asymptotic solution (5) states that
the growth rate increases as the sine of the direction angle increases. Therefore,
for a given frequency, the interfacial waves appear at the largest m satisfying
sin(θ̄ ) = mπ/(Bk̄) � 1, or:

m = INT(k̄B/π). (15)

From table 1, we see that as the surface wave frequency increases, k̄ increases, resulting
in either a decreasing θ̄ at the same m; or, if the increase in k̄ is large enough, an
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Figure 3. Observed three-dimensional standing interfacial wave in experiment 4, m= 4.

increase in m. Increasing the surface wave frequency from 4.8 s−1 (exp. 1) to 7.9 s−1

(exp. 7) results in an increase in m from 2 to 6. The direction angle varied between
43◦ and 80◦.

5. Discussion
Predicted growth rates were obtained using the solution to the evolution equations

of Jamali (1998), first with (10), and then with (11) as the interfacial boundary
condition. The predicted growth rates are plotted as a function of k̄B/π in figure 4
along with the predicted and measured mode numbers. The bands of instability are
very narrow when Hill & Foda’s (1998) boundary condition is used, and only two of
the experiments fall within these narrow bands. However, when the correct boundary
condition is included, the predicted growth rate is positive for all k̄B/π, consistent
with the fact that instability was observed in all seven experiments. Also, the observed
mode numbers are correctly predicted by (15), which is a confirmation of the result
that the more oblique the interfacial waves, the higher their growth rate, see (5).

Besides experiments with δ = 0.04, Jamali (1998) also conducted a series of experi-
ments with δ = 0.07, 0.11 and 0.14. In all cases, instability was observed, the only caveat
being that the surface wave amplitude be greater than a critical value necessary to
overcome the effects of viscosity at the interface, the walls and the bed of the tank.
The observation that viscosity can suppress the instability is in agreement with the
theoretical findings of Jamali (1998), Hill & Foda (1999) and Jamali et al. (2003).
Thus, if viscosity had been included in Hill & Foda’s (1998) analysis it would have
restricted the conditions necessary for instability even further.

Thus, the main consequence of Hill & Foda (1998) using (11) as the interfacial
boundary condition is the prediction that there exist only narrow bands of frequency,
density ratio and direction angle within which growth is possible. Whereas the
experiments of Jamali (1998) exhibited instability at all values of frequency, density
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Figure 4. , predictions of growth rate made using the solution of Jamali (1998) with
boundary condition (10) and —, boundary condition (11) as a function of k̄B/π for experiments
1–7; δ =0.04, d = 3.9 cm, H = 16.3 cm. Also plotted are , the predicted and �, observed
mode numbers.

ratio and direction angle tested, consistent with predictions made using (10) as the
interfacial boundary condition.

6. Summary and conclusions
Two studies of the interaction between a surface wave and two interfacial waves

have produced conflicting results. Hill & Foda (1998) claimed that the instability
of the interfacial waves is a very selective process, occurring under very specific
conditions, but Jamali (1998) predicted and observed wave growth over a wide
range of parameters. The crucial difference between the two studies is in the dynamic
interfacial boundary condition. The boundary condition used by Hill & Foda (1998) is
missing a term that is proportional to the time derivative of the square of the velocity
shear across the interface. If this term is included in the analysis, the theoretical
predictions match the results of Jamali’s (1998) laboratory experiments.
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